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LPRE combustion instability involves large-amplitude oscillations in the rocket
combustion chamber with potentially disastrous consequences. It is a long-
standing problem because every confined gas volume resonates acoustically.

-- Address nonlinear triggering, transient oscillations, and limit-cycle
oscillations

-- Uncertainties are magnitude, duration, orientation and location of
triggering disturbances.

-- Stochastic processes creating triggers can be fluctuations in
propellant flow rates, accelerations, and rogue vortices.

-- Combustion and flow in a liquid-propellant rocket engine (LPRE)
forms a complex system.

-- Complex systems involve stochastic behaviors of semi-autonomous
components networked allowing emergent behavior to develop.

-- Networked system components are combustor, nozzle, propellant
injectors, and all flow and thermal structures.

* Emergent structures are large-amplitude acoustic oscillation.




Content of Presentation

Reduced-Dimension Partial Differential Equation
-- Solution with 10 Co-axial Injectors by CFD
-- Solution with 10 to 19 Injectors by Nonlinear Perturbation Method
-- Stochastic Analysis for Triggering Probability
CFD Analysis of Single-Injector Engine
-- Axisymmetric Analysis of Vortex Dynamics Coupled with Acoustics
-- Use of Hybrid LES-RANS
-- Use of Flamelet Theory
-- Extension of Design to Study Triggering
3D CFD Analysis of 10- to 30-Injector Chamber
-- Analysis of Vortex Dynamics Coupled with Acoustics
-- Use of Hybrid LES-RANS
-- Full-length Nozzle and Injector-port Coupling
-- Planned Use of Flamelet Theory
-- Study Triggering
-- Planned Real-gas study



Reduced Dimension -- 2D Analysis: Inviscid on large scale,
turbulent mixing on injector scale, average over stream direction
Nonlinear Transverse Pressure Wave Equation
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A stochastic triggering disturbance could appear in several ways:
-- Introduction through reacting, mixing flow-field condition

-- An intermittent blockage in propellant injector flow.

-- Asharp vibrational, translational, or rotational engine acceleration.
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Develop accurate and efficient computational
models of unstable combustion and flow in
LPRE chamber. Develop stochastic methods for
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predicting probability of an instability. ldentify . -
triggering mechanismes. " |
Ten-coaxial-injector Simulation -- A turbulent R o S
jet diffusion flame at each injector. S i
Time lag from mixing and Kinetics. -
-- Similar results with oscillating dipole ’

disturbance, directed Gaussian pulse, = ° .

body force, injector pulse. ‘
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Stochastic Analysis of Triggering Mechanism
Polynomial Chaos Expansion (PCE) Method

The several characteristics of the disturbing pulse will be the random
variables (RV) and form the vector .

-- Equations for wave dynamics
governing pressure and velocity.
-- Diffusion/advection/reaction

Ciyln,r, 0.1, 8) =6 (r. 8,1 m, &)

equations for each injector Lolm,z.ntE =5 (r,nt,ng)
governing temperature and P
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-- Expand the dependent variables in a
series of Legendre polynomials (PCE)
-- Truncate to “‘converge” the series. | | |
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-- Substitute PCE in equations and Error SN
solve resulting PDEs for \
coefficients by finite-differences. 6
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Quantitative Error vs. Computational Cost
-- Better than Monte Carlo

o ,I‘ PCE sirnulalinrlls
9 A ® Monte Carlo (10000 samples)
1 E) Projected Monte Carlo Accuracy . . . . .
For triggering of spinning (standing)
wave, pulsing duration matching an
odd (any) multiple of chamber half
(full) period is optimal.
1077
. . . . 0.3 spinning wave — Monte Carlo 95% CI
1010'2 10° 1P 10 10° = = = gpinning wave — E1h—degree PCE
Computational cost (PCU hours) = = = slanding wave - 6™_degree PCE
= 025 Spinning wave - ?1h-degree PCE
. -p- E standing wave — 7'"-degree PCE
M arg | nal P rObabI I Ity g} s:nding wave — Munte%arlu 95% Cl
e B o2r
04 E e
Cosl g
-§L 0zl E:
= o 01
g 04 =
Q 4l E
o 0.05
I
>

- % o0z 04 06 08 1 12 14 16 18 2
orientation (rad) 250 dipole magnitudeatm) Duration of dipole disturbance (relative to period of first tangential)



New Physics for Triggering: Engine Acceleration or Vibration

-- Stochastic Simulation

Applied acceleration influences

the probability of triggering with
either linear motion or elliptical-path
motion.

Maximal conditional probability of
growth occurs when acceleration has
the first transverse mode frequency.

For considerable departures from
2000Hz, probability of growth
decreases significantly.

Even for a mismatched frequency,
probability of growth is non-zero, due
to the unconditionally unstable portion
of the parameter space.

Probability of growth to a limit cycle

Increases monotonically with increasing
acceleration amplitude.
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Anti-Pulses as Control Mechanisms

The same mechanisms that cause an instability can be applied,

with proper magnitude and timing, to arrest a growing instability.
This can work for disruptive combustion event, applied acceleration,
or injector blockage. Clearly, strong potential for a control
mechanism exists through this use of “anti-pulsing.”
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of-phase second pulse will reduce
the instability's magnitude
temporarily, but the instability will
continue its growth to a limit cycle
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Two-time variable asymptotic analysis determines

the slow time behavior of amplitude and phase by eliminating
third-order nonlinear resonance. o = M = =2

Two first-order ODEs describe the transient behavior

and yield a limit cycle.
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Experimental Verification with Purdue Rectangular
Engine with Transverse Oscillations.

There is good agreement with experiment.
Acoustic instability is predicted in all cases with 5 — P
8% under-prediction of limit-cycle amplitude and
frequency. Greatest relative errors are observed in
the most stable cases where simulation predicts
linear stability, with a very small instability
threshold.
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Single Injector Engine — Longitudinal Mode Instability:
Continuously Variable Resonance Combustor (CVRC)

Second eXperlmental Iiteration Reactants T, (K) P, (atm)

» Gaseous methane fuel (T= 300 K) CH, 190.6 45.6
e Decomposed H,O, O, 154.6 45.8
 Axial fuel injection H 33.2 L~

o _ H,0 647 217.75
 Oxidizer post length varies co, 30418 72.83
 Different stability domains co 134.45 34.98

 Ideal for numerical simulations
¢ P, ..,= 1400 kPa
High-fidelity hybrid RANS/LES or purely LES simulations of CVRC

— 3D: Harvazinski (2012), Harvazinski et al. (2012), Garby et al.
(2013), Srinivasan et al. (2014)

— Axisymmetric: Harvazinski (2012), Garby et al. (2013),
Sardeshmukh et al. (2015)

— Good agreement with experiments: 3D with global mechanism or
axisymmetric with detailed mechanism

— Computationally expensive



Simulation Details

CH4 at T=300K, my = 0.027 kg/s

58 % H20 & 42 % 02 at T=1030K, m, = 0.027 kg/s
Choked nozzle: My o, = 0.12

38-cm chamber length

3 different cases: 9-cm, 12-cm, 14-cm ox. Post

Benchmark against: experimental data ( Yu et al., 2012), 3D
simulations (Srinivasan et al. )
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Combustion Model

o Heat Release Rate ipecies reaction rate
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Flamelet Model

o Compressible Flamelet Progress Variable
— Chemical time scales < turbulent time scales
— Non-premixed counterflow diffusion flame

Fuel mass fraction
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Vortex structures synchronized with oscillations

and influencing combustion process

The choked nozzle case
simulates the Purdue CVRC
with 14 cm Ox port. __ Choked Nozzle

The open-end case maintain
the same mass flux, mixture
ratio and pressure but allows
no combustion instability.

The oscillations significantly
affect vortex formation,
mixing, and combustion.

Vortex frequency increases
matching oscillation
frequency.




Coupling of Acoustics and Vorticity

t=0.000 ms
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Power Spectral Density
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Current computation

Srinivasan et al.

Ox. Post Length

1st mode (Hz)

2nd mode (Hz)

3rd Mode (Hz)

9 cm - Computation (UCI) 1400 2900 4350
9 cm - Computation (Srinivasan) 1686 2791 3373
9 cm - Experiment 1392 2704 3772
12 cm - Computation (UCI) 1600 2906 4500
12 cm - Computation (Srinivasan) 1613 3268 4881
12 cm - Experiment 1385 2777 4169
14 cm - Computation (UCI) 1520 2880 4440
14 cm - Computation (Srinivasan) 1592 3130 4722
14 cm - Experiment 1331 2655 3986
Institution Type Mesh size Number of species Core hours per ms
UcCl Axisymmetric 6.26E4 27 0.28
CNRS! Axisymmetric 7E5 5 160
Purdue University Axisymmetric 5.5E4 4 53
Purdue University Axisymmetric 2E5 4 480
CNRS 3D 14E6 h 1024
AFRL? 3D 4E6 4 11520
AFRL 3D 4E6 A 259200
Georgia Tech. 3D 1.4E6 5 3333




Triggering
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Multi-injector Computations

3D hybrid LES-RANS resolving vortex structures
Couplings with choked nozzle and co-axial injector ports
Methane-oxygen one-step Kinetics
(Flamelet model planned for the future)
10, 19, and 30 injectors are examined.
Nineteen-injector case is portrayed here.
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Cases Studied for 10 and 19 Injectors

Table 1. Test Cases Parameters

Injectors | D, (em) | D¢ (em) | 1 (kg/s) € instability mode f(Hz) | Ta (K) | noHa4
104 10 28 9.5 80 0 none - 3398.8 | 80.0%
10B 10 28 8.2 65 0 spontaneous longitudinal | 1455.1 | 3539.5 | 86.55%
10C 10 28 6.7 49 0 spontaneous longitudinal | 1596.3 3813 97.2%
194 19 28 9.5 80 0 spontaneous longitudinal | 1595.3 3916 84.5%
19B 19 28 9.5 80 1.0 | spontaneous longitudinal | 1622.7 | 3866.3 80%
19LA 19 43 9.5 80 0 spontaneous longitudinal | 1437 | 3434.5 86%
19LB 19 43 9.5 80 0.25 triggered longitudinal 1448 3505 88.5%
19LC 19 43 9.5 80 0.50 triggered tangential 1771.4 4151 95.3%
19LD 19 43 9.5 80 0.75 triggered tangential 1796.5 4215 95.4%
19LE 19 43 9.5 80 1.0 triggered tangential 1807.5 4352 95.5%
19LF 19 43 9.5 80 1.0 triggered tangential 1803.5 4080 94.5%




Spontaneous Longitudinal Mode
19 Injectors - 28 cm diameter

Pressure Heat Release Rate




Triggered Tangential Mode

19 Injectors - 43 cm diameter
Different triggering for spinning and standing modes

Spinning Wave --
Location of red
and blue injectors
rotate with out-
of-phase pulses
for a few cycles

Pressure

Standing Wave --




Rayleigh Index
Tangential Spinning Mode
19 Injectors




Phasing of Heat Release Rate and Vorticity
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Dot Product of Velocity and Vorticity .

An Indicator of Streamwise Vorticity
The acoustically driven transverse flow in the
combustion chamber shears the axial jet flow

and initiates internal circulation in the
transverse plane of jet flow

The streamwise counter-rotating vortices should enhance
mixing and burning.



Table 1. Combustion chamber parameters

Depamber | Dox | Dret | Lchamber | Mixture | Chamber T ) | Tea (0 Ditwoat
(em) | (mm) | (mm) | (cm) |Ratio(ox/fuel) | pressure | ™ e (cm)
19-inj| 280r43 | 14.2 16.1 33 4:1 230bar | 400 400 9.5
30-inj| 14376 | 7.64 | 9.10 | 24.2 2.55:1 130bar | 119.8 | 281 8.4

An Attempt is made to match radial
and tangential mass-flow distribution
with the 82-injector experiment of
Jensen et al. (1989)




REAL-GAS EFFECTS ON COMPRESSIBLE FLOW

Comparison with Ideal-gas Results

-- Reductions in mass flux, momentum flux, and thrust for flow through
choked nozzle at fixed chamber pressure. CO,, 30 MPa, 1000 K.

-- Increased pressure amplitude for piston-driven

oscillations. CO,, 30 MPa, 1000 K.
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Summary of Advances
 Reduced-order modeling (ROM)

-- Reduced dimension

-- Hybrid LES-RANS

-- Flamelet model for combustion
-- Perturbation analysis

o Stochastic analysis
e Comparison with experiments
* New physical insights
-- New triggering mechanism — acceleration / vibration

-- Trigger low-amplitude oscillations to higher-
amplitude limit cycle

-- Potential control mechanisms
-- Role of vorticity dynamics
-- Real-gas capabilities



Thank You.






3D Representation of marginal probability A disturbance at a larger radial position
or with a better matching oscillation
period is more likely to cause instability.
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Pressure Signal Comparisons

12-cm case 14-cm case

Cycle Number 9-cm case




Main Flow Equations

* Fully conserved, Favre-averaged Navier-Stokes
equation

dpy | opvy _ _9p , AmitTy)
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OpE | O%(PEAP) _ & |~ . R Ok \ o8 [ Ay )oh
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Total energy TKE
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E — - ViV k e, e =h—=
- E v |+ ke, :
. J=1 . thermal energy

mean flow kinetic energy
Heat of formation
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Turbulence Model
 Delayed Detached Eddy Simulation
— Based on the 2006 Wilcox k-w two-equation RANS
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Real-gas effects on flame location and extinction

-- Counterflow diffusion flame location is modified from "i'-l_h_fl'-;'h'"
ideal-gas behavior because of density of colder gas even '
. . |
Though the flame region follows the ideal-gas law closely. K
s i et T__
-- Extinction occurs at lower flame temperature and ’ gy P
strain rate which is consequential for turbulent il e
. M ethane .
i
com.bustlon. (+ H.O Vapar) ir
-- Since temperature decreases at constant T o
enthalpy and composition, a local minimum occurs Y, -~
. . . . WY
in the extinction temperature as pressure increases. 4|
2500f Case 1] C306C5 2 C1 C4 - T  Extinction temperature
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Computational Cost

Institution Type Mesh size Number of species Core hours per ms
UCI Axisymmetric 6.26E4 27 0.28
CNRS! Axisy mmetric 7E5 5 160
Purdue University Axisymmetric 5.5E4 4 53
Purdue University Axisymmetric 2E5 4 480
CMNRS 3D 14E6 3 1024
AFRL? 3D 4E6 4 11520
AFRL 3D 4E6 31 259200
Georgia Tech. 3D 1.4E6 . 3333




Stabilization

Baseline case: 14-cm ox. Post with
38-cm chamber

Six cases considered

Isothermal wall: T= 1800 K, 1030 K,
600 K (adiabatic wall: 2700 K)
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Isothermal cases Shortened chamber

Case Configuration Wall B.C. f; (Hz) Stable
1 14 & 38 cm T= 1800 K 1422 Mo
2 14 & 38 cm T=1030 K 1397 Mo
3 14 & 38 cm T=- 600K 1372 Yes
4 14 & 30 cm Adiabatic 1771 Yes
5
6

17 & 30 cm Adiabatic 1622 Yes
17 & 38 cm Adiabatic 1447 Mo
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Time-Averaged Fuel Behaviors
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Instability Mechanisms

° Compare 3 cases e Vortex shedding
— 14-cm constant pressure * f» =800 Hz — S5t =0.0878
— 9-cm choked nozzle ( 9C) * fy=1397 Hz — 5t = 0.1229
— 14-cm choked nozzle * fr=1546Hz - St =0.1316
(14C) e Strouhal number
* Rayleigh index . st =52
t 1 u
R.I = —f +Tyy p' wrdt * Preffered mode: 0.1-0.3

MCP. . - 14{: .




Low Probability Triggered Instabilities

Background — There is a significant probability for triggered instability by

» asingle stochastic disturbance of short duration and large amplitude

» two sequential stochastic acceleration disturbances of short duration and
smaller amplitude but of synergistic phase.

New Problem: Triggering by a continuing noise-level disturbance
The probability of instability by a stochastic vibration disturbance of
very low amplitude and very long duration (acceleration noise) exists albeit

low.
Acceleration profile taken as a smoothed Wiener process over [0, t4]

a®(t; <t <tiy1) = cos> (TF(ET_:)) A, +sin? (w(gT_:)) A1, A, ~N(0,0%15)

Approach: Standard Monte Carlo is ineffective for rare events.
Introduce a proposal distribution that emphasizes samples more likely to
cause instability. Proposal distribution is based on modifying

om/s? P

A, NJ\/'(mi,g212), m; = —— HP:jH XxXmax (20atm — HPZ_lH,O) X td-I-tf—ti

and adjusting the estimated probability by the Likelihood Ratio:

) N(0,0’zfg)
1 N(m;,0215)




Rare Event Results

1 T : T &

* Probability of instability

increases with RMS level and
duration of the noise; we
established an empirical law
governing these relations

o
o
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® 2DOF acceleration
1DOF acceleration
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Probability of growth
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* Probability of instability rises .
Sharply Within a Sma” RMS 20 40 60 80 100 120 140 160 180
range indicating a critical level a_ (m/s?)
separating two phases ,

(suggesting a complex systems
criticality phenomenon) 10° oo o

T

e —— P ~Aexp(Bt %)
e _ 2
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